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ABSTRACT

This project report focuses into Polynomial Identity Testing (PIT) for Read-Once Algebraic Branching
Programs (ROABPs) and Log-Variate circuits. We systematically explore the development of PIT
ideas in these models and their efficiency and unique properties. ROABPs, a specialized form of
Algebraic Branching Programs (ABPs) where each variable appears only once per path, allow for
potentially more efficient PIT algorithms due to their structured nature. This report also investigates a
conjecture presented in [3], applying various methods and tried to examine its validity. Additionally,
we provide an overview of Log-Variate circuits, highlighting their relevance in the context of PIT. All
proofs not included in this paper can be found in the cited references.

1 Introduction

Arithmetic circuits, Algebraic Branching Programs (ABP), and Read-Once Algebraic Branching Programs (ROABP)
are essential in algebraic complexity theory, focusing on computing polynomial functions efficiently. Arithmetic circuits,
much like their Boolean counterparts, use addition and multiplication gates to perform their calculations. ABPs, utilize
layered, directed graphs where each path represents a polynomial’s computation, often providing a more compact
representation. ROABPs are a more specialized version of ABPs, with the constraint that each variable appears only
once along any path, simplifying analysis and potentially leading to more efficient algorithms. One interesting and
challenging problem in this field is Polynomial Identity Testing (PIT), which checks whether a given model computes
the zero polynomial. Efficient PIT algorithms, are vital for verifying computations in both arithmetic circuits and ABPs.
For ROABPs, their unique structure sometimes allows for better PIT algorithms, making it a more understandable
field of research compared to general ABPs. Understanding these models and their role in PIT is crucial. We will
focus mainly on polynomial identity testing for ROABPs and gave a small overview of few methods that can be further
developed to get better PIT algorithms. At last we also look into log-variate circuits along with PIT for it as well.

2 Circuits, ABPs & ROABPs

We will go through mainly different kind of ROABPs as in [3]. Before that we would define some other branching
programs and get some general idea about them.

Definition 2.1. ([4]). A Layered Algebraic branching program (ABP) is a directed acyclic graph with one source
and one sink. The vertices of the graph are partitioned into “levels” numbered from 0 to d, where edges may only go
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2 CIRCUITS, ABPS & ROABPS PIT for ROABPs and Log-Variate Circuits

from level i to level i+ 1. d is called the degree of the ABP. The source is the only vertex at level 0 and the sink is the
only vertex at level d. Each edge is labeled with a homogeneous linear function of x1...xn (i.e. a function of the form∑

cixi). The width of an ABP is the maximum number of nodes in any layer, and the size of the ABP is the number of
vertices.

In an ABP, each directed source-sink path computes a polynomial by multiplying the labels on the edges in the order
they appear from source to sink. The ABP then computes the sum of all such polynomials, computed as:

f(x1, . . . , xn) = (D1 ·D2 · . . . ·Dq)(1,1)

where

Di =

label(u1, v1) label(u1, v2) · · ·
label(u2, v1) label(u2, v2) · · ·

...
...

. . .


which is equivalent to:

f(x1, . . . , xn) =
∑

all paths from source to sink

Ppath

where
Ppath =

∏
edges (u,v)∈path

label(u, v)

We have the polynomial computed by the ABP same as UT (
q∏

i=0

Di)V , where U, V ∈ Fw×1 and Di is a w ×

w matrix for 1 ≤ i ≤ q such that; U(ℓ) = W (u, v0,ℓ) for 1 ≤ ℓ ≤ w; Di(k, ℓ) = W (vi−1,k, vi,ℓ) for 1 ≤ ℓ, k ≤
w and 1 ≤ i ≤ q; V (k) = W (vq,k, t) for 1 ≤ k ≤ w and w is the width of the ABP.

Note that we would define the formula complexity of a function f is denoted by F (f), the circuit complexity by C(f),
the circuit depth complexity by D(f), the ABP complexity by B(f).

Now we will see the characterization of ABP as in [4]. Let f be a homogeneous function on n variables of degree d.
For each 0 < k < d, we define a real matrix Mk(f) with dimensions as follows: there is a row for each sequence of k
variables (called a k-term), and a column for each sequence of d−k variables (called a d−k-term, allowing repetitions)
out of the n possible variables. The entry at ⟨xi1 , . . . , xik⟩ ,

〈
xj1 , . . . , xjd−k

〉
is defined to be the real coefficient of the

monomial xi1 · · ·xikxj1 · · ·xjd−k
in f .

M
(k)
f

(
⟨xi1 , . . . , xik⟩ ,

〈
xj1 , . . . , xjd−k

〉)
= coefficient of the monomial xi1 · · ·xikxj1 · · ·xjd−k

in f

Theorem 2.1. ([4], theorem 1). For any homogeneous function f of degree d,

B(f) =

d∑
k=0

rank(Mk(f))

Our work focuses on a even restricted model, defined as follows.

Definition 2.2. A Read-Once Oblivious Algebraic Branching Program (ROABP) in the variable set x = {x1, . . . , xn}
is an ABP of depth n where each edge between layer i− 1 and layer i is labeled with a univariate polynomial in xσ(i)

of degree less than d and some permutation σ of {1, ..., n}.

Here we have q = n, as variables doesn’t repeat. The entries in Di is from F[xσ(i)]. The order (xσ(1), xσ(2), ..., xσ(n))
is said to be the variable order of the ROABP. In a similar way to ABP we can write

f(xσ(1), . . . , xσ(n)) = UT (D1 ·D2 · . . . ·Dn)V

where Di ∈ Fw×w[xσ(i)] for 1 ≤ i ≤ n and U, V ∈ Fw×1.

Definition 2.3. ([5]): ROABP[∃](n, d, w) denotes n-variate polynomials of individual degree d that are computable
by a width-w ROABP in some order σ ∈ Sn.
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3 CONSTRUCTION OF ROABP PIT for ROABPs and Log-Variate Circuits

Definition 2.4. ([5]): ROABP[∀](n, d, w) denotes n-variate polynomials of individual degree d that are computable
by a width-w ROABP in every order.

Definition 2.5. (Commutative ROABP, [3]): A Read-Once Oblivious Algebraic Branching Program (ROABP)
UT (

∏q
i=1 Di)V is called a commutative ROABP if all Di are polynomials over a commutative subalgebra of the

matrix algebra. For instance, this is the case when the coefficients in the polynomials Dis are diagonal matrices.
In a commutative ROABP, the order of the variables becomes irrelevant. Therefore, a polynomial computed by a
commutative ROABP can be computed by an ROABP in any variable order.

Definition 2.6. (Depth-3 Set-Multilinear Circuits, [3]): A depth-3 set-multilinear circuit is a circuit of the form

C(x) =

k∑
i=1

li,1(x1)li,2(x2) · · · li,q(xq),

where li,j are linear polynomials and x1, x2, . . . , xq form a partition of x. These circuits are subsumed by ROABPs but
are incomparable to commutative ROABPs. The corresponding polynomial over a k-dimensional algebra is

D(x) = D1(x1)D2(x2) · · ·Dq(xq),

where Dj = (l1,j , l2,j , . . . , lk,j) and the algebra product is coordinate-wise. It follows that C = (1, 1, . . . , 1) · D.
Polynomials Dj are over a commutative algebra, so techniques for commutative ROABPs apply to set-multilinear
circuits.

Definition 2.7. (Diagonal ROABPs, [5]): Diagonal ROABPs are ROABPs where all the n(d+1) coefficient matrices are
diagonal matrices. A diagROABP(n, d, w) represents n-variate polynomials of individual degree d that are computable
by a width w diagonal ROABP.

We can also get a hierarchy as given below:

Σ
∧

Σ ⊊ diagROABP ⊆ commROABP ⊆ ROABP[∀] ⊊ ROABP[∃]

3 Construction of ROABP

We can construct ROABP for many kinds of polynomials but here we will only show it for Elementary Symetric
Polynomials.

Definition 3.1. (Elementary Symmetric Polynomials): The n-variate elementary symmetric polynomial of degree d,
denoted by ESymd

n, is defined as follows:

ESymd
n(x) :=

∑
S⊂[n]
|S|=d

∏
i∈S

xi

Below in Figure 1 we have a construction of ROABP for ESym5
3 taken from [5] which is provably tight owing to the

characterisation result by [4].

Now some constructions of ROABPs as in [5] will be stated and described.

Construction 3.1. For any n, d ∈ N such that d ≤ n, the n-variate elementary symmetric polynomial of degree d,
denoted by ESymd

n(x), can be expressed as:

ESymd
n(x) = (M(x1)M(x2) · · ·M(xn))[1, d+ 1],

where M(xi) is a (d+ 1)× (d+ 1) matrix with:

M(xi)[k, k] = 1 for 1 ≤ k ≤ (d+ 1),

M(xi)[k, k + 1] = 1 for 1 ≤ k ≤ d,

and all other entries are zero.
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3 CONSTRUCTION OF ROABP PIT for ROABPs and Log-Variate Circuits

Figure 1: Commutative ROABP for ESym5
3 (unlabelled edges have the label 1)

The matrix M(xi) can also be written as (I +Axi), where A has 1s on its super-diagonal and zeros elsewhere, and I is
the identity matrix. This gives:

ESymd
n(x) =

(
n∏

i=1

(I +Axi)

)
[1, d+ 1] = uT

∏
i∈[n]

(I +Axi)

 v,

for suitable vectors u, v ∈ Cd+1.

We can now see that:

• All coefficient matrices I and A commute, making it a commutative ROABP.

•
(

n∏
i=1

(I +Axi)

)
=

∑
0≤j≤n

ESymj
nA

j =
∑

0≤j≤d ESymj
nA

j , since Aj = 0 for j ≥ d+ 1.

• The (1, d+ 1)-th entry of (
∏n

i=1(I +Axi)) computes the coefficient of Ad, which is ESymd
n.

Using univariate interpolation (Folklore), leads to a depth-3 multilinear circuit for ESymd
n with top fan-in n+ 1, as in

[6], and provides a nearly-optimal construction for a diagonal ROABP computing ESymd
n.

Construction 3.2. For any n, d ∈ N and distinct a0, a1, . . . , an ∈ C, there exist constants β0, β1, . . . , βn ∈ C such
that

ESymd
n(x) =

∑
0≤j≤n

βj(1 + ajx1)(1 + ajx2) · · · (1 + ajxn).

Construction 3.3. For any n, d ∈ N, we have:

(x1 + x2 + · · ·+ xn)
d = (M(x1)M(x2) · · ·M(xn))[1, d+ 1],

where M(xi) is a (d+ 1)× (d+ 1) matrix with:

M(xi)[k, k + ℓ] =

(
d− k

ℓ

)
xℓ
i for all 0 ≤ k ≤ d and 0 ≤ ℓ ≤ (d− k).

We can write M(xi) as:

M(xi) = I +A1xi +
A2

2!
x2
i + · · ·+ Ad

d!
xd
i ,

where A is a (d+ 1)× (d+ 1) matrix with A[i, i+ 1] = (d− i) and other entries are zero.

We can now see that:

• All coefficient matrices I and powers of A commute, making this a commutative ROABP.
• The (1, d+ 1)-th entry of M(x1)M(x2) · · ·M(xn) computes the coefficient of Ad divided by d!.

Construction 3.4. For any n, d ∈ N and distinct a0, a1, . . . , and ∈ C, there exist β0, β1, . . . , βnd ∈ C such that:

(x1 + x2 + · · ·+ xn)
d =

∑
0≤j≤nd

βj

∏
i∈[n]

(
1 + ajxi +

a2j
2!
x2
i +

a3j
3!
x3
i + · · ·+

adj
d!

xd
i

)
.
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4 PIT FOR ROABP PIT for ROABPs and Log-Variate Circuits

4 PIT for ROABP

We will first explain the generators and hitting sets for ROABPs. Before that we need to get a small idea on hitting sets.

Definition 4.1. A polynomial mapping G = (G1, . . . , Gn) : Ft → Fn is a generator for the circuit class M if for
every nonzero n-variate polynomial f ∈ M, the composition f ◦G is not identically zero, i.e., f(G) ̸≡ 0. The image of
the map G is denoted by Im(G) = G(Ft). Ideally, t should be very small compared to n.

Definition 4.2. A set of points H is called a hitting set for a class C of polynomials if for any nonzero polynomial P in
C, there exists a point in H where P evaluates to a nonzero value. An f(n)-time hitting set means that the hitting set
can be generated in time f(n) for input size n.

First, we will describe a simple randomized algorithm known as the Schwartz-Zippel Algorithm. This algorithm
is based on the observation that a nonzero low-degree polynomial does not have many zeros. The Schwartz-Zippel
Algorithm is a probabilistic algorithm that leverages the property that a nonzero polynomial of low degree over a finite
field has a limited number of zeros.

Lemma 4.1. ([7]): Let f(x1, . . . , xn) be a nonzero polynomial of degree at most r, and let T ⊆ F. If we choose
a = (a1, . . . , an) ∈ Tn uniformly at random, then

Pr[f(a) = 0] ≤ r

|T |
.

This lemma suggests a randomized algorithm for Polynomial Identity Testing (PIT): given a polynomial f(x1, . . . , xn)
of degree at most r, pick at random a ∈ Tn and check whether f(a) = 0. If f ̸≡ 0, the probability of error is at most
r
|T | , and if f ≡ 0, we are always correct. To achieve an error of at most ϵ, we should pick a set T of size |T | ≥ r

ϵ .
This requires n · ⌈log2

(
r
ϵ

)
⌉ random bits. Another corollary of Lemma 4.1 is that there exists a small hitting set for all

polynomial size arithmetic circuits. The proof follows from a straightforward application of the union bound.

Theorem 4.1. ([7]): For every integers n, r, s and a field F with |F| ≥ max(r2, s), there exists a set H ⊆ Fn with
|H| = poly(r, s) that serves as a hitting set for all circuits of size at most s and degree at most r.

First we will deal the case of known-order ROABPs and state the results as in [3]. Before that we need to know about
basis isolation and some uses of it as described in [2].

Definition 4.3. A weight assignment w of the variables x1, x2, . . . , xn is a map w : {x1, x2, . . . , xn} → N. This

map extends to monomials w : M(x) → N by w(xa) :=
n∑

i=1

w(xi)ai for xa =
n∏

i=1

xai
i . An important tool is the

construction of weight assignments that can separate polynomially many monomials, ensuring that distinct monomials
receive different weights with high probability.

Lemma 4.2. For n, s, ℓ ∈ N+ and 0 < ϵ < 1, there exist weight assignments w1, w2, . . . , wN : {x1, x2, . . . , xn} →
[N logN ], where N = poly(n, s, log ℓ, ϵ−1), such that for any s monomials m1,m2, . . . ,ms ∈ M(x) of individual
degree less than ℓ, all but at most ϵ-fraction of wi separate these monomials, i.e., wi(mj) ̸= wi(mj′) for j, j′ ∈ [s] and
mj ̸= mj′ . These weight assignments can be computed in polynomial time.

Definition 4.4. (Basis Isolating Weight Assignment): For a polynomial f ∈ A[x], a weight assignment w :
{x1, x2, . . . , xn} → N is called basis isolating for f if there exists a set S ⊆ M(x) of monomials such that their
coefficients in f form a basis of span(f), and the following conditions hold:

1. w(m) ̸= w(m′) for distinct m,m′ ∈ S, and

2. For m ∈ M(x) \ S, coeff (m) ∈ span{coeff (m
′) : m′ ∈ S,w(m′) < w(m)}.

The following lemma states that if w is a basis isolating weight assignment, then the variable substitution map
xi 7→ yw(xi) preserves the nonzeroness of polynomials. This makes basis isolating weight assignments a very useful
tool for polynomial identity testing (PIT).
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4 PIT FOR ROABP PIT for ROABPs and Log-Variate Circuits

Lemma 4.3. Let f(x) ∈ A[x], β, γ ∈ Fr, and g(x) = βT f(x)γ ∈ F [x]. Suppose w : {x1, x2, . . . , xn} → N is a
basis isolating weight assignment for f . Then g(x) = 0 if and only if g(yw(x1), yw(x2), . . . , yw(xn)) = 0.

Now we will get into describing how to get hitting set for known-order bivariate ROABP first and then n-variate ROABP
and then to some other kinds of ROABP as well.

4.1 Bivariate ROABP

To construct a hitting set for read-once arithmetic branching programs (ROABPs), we first consider the bivariate case. A
bivariate ROABP has the form UTD1(x1)D2(x2)T , where U, T ∈ Fw×1, D1 ∈ Fw×w[x1], and D2 ∈ Fw×w[x2]. Any

bivariate polynomial f(x1, x2) computed by a width-w ROABP can be expressed as f(x1, x2) =
w∑

r=1
gr(x1)hr(x2).

To construct a hitting set for such polynomials, we utilize the partial derivative matrix Mf , defined as follows: for
f ∈ F[x1, x2] with individual degree at most d, the partial derivative matrix Mf is a (d+ 1)× (d+ 1) matrix where

Mf (i, j) = coeff(xi
1x

j
2) ∈ F.

The rank of Mf gives the minimum width of an ROABP that computes f as in [4].

Lemma 4.4. ([3]): For any polynomial f(x1, x2) =
w∑

r=1
gr(x1)hr(x2), the rank of the partial derivative matrix Mf

satisfies
rank(Mf ) ≤ w.

Now using this lemma we get the hitting set as below.

Lemma 4.5. ([3]): Let char(F) = 0 or char(F) > d. Let f(x1, x2) =
w∑

r=1
gr(x1)hr(x2) be a nonzero bivariate

polynomial over F with individual degree d. Then

f(tw, tw + tw−1) ̸= 0.

4.2 n-variate ROABP

We use the map from Lemma 4.5 to construct a hitting set for general n-variate ROABPs by applying it recursively. We
pair consecutive variables (x2i−1, x2i) and apply the map with a new variable ti, reducing the number of variables by
half each time. Repeating this halving process log n times results in a univariate polynomial with degree at most wlogn

times the original degree. WLOG we can assume n is a power of 2.

Lemma 4.6. ([3]): Let char(F) = 0 or char(F) > d. Let f(x) = D1(x1)D2(x2) · · ·Dn(xn) be a nonzero polynomial
computed by a width-w and individual degree-d ROABP, where D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn], and Di ∈ Fw×w[xi]
for 2 ≤ i ≤ n− 1. Let the map ϕ : x → F[t] such that for 1 ≤ i ≤ n/2,

ϕ(x2i−1) = twi , ϕ(x2i) = twi + tw−1
i .

Then f(ϕ(x)) ̸= 0. Moreover, the polynomial f ′(t1, t2, . . . , tn/2) := f(ϕ(x)) is computed by a width-w ROABP in the
variable order (t1, t2, . . . , tn/2).

It is easy to see that when the map ϕ is repeatedly applied in the above lemma log n times, we get a nonzero univariate
polynomial of degree ndwlogn.

Lemma 4.7. ([3]): Let char(F) = 0, or char(F) ≥ ndwlogn. Let f ∈ F[x] be a nonzero polynomial, with individual
degree d, computed by a width-w ROABP in variable order (x0, x1, . . . , xn−1). Let the map ϕ : {x0, x1, . . . , xn−1} →
F [t] be such that for any index 0 ≤ i ≤ n− 1,

ϕ(xi) = pi1(pi2(. . . (pilog n
(t)) . . .)),

where ilognilogn−1 . . . i1 is the binary representation of i. Then f(ϕ(x)) is a nonzero univariate polynomial with
degree ndwlogn.
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5 PIT FOR LOG-VARIATE CIRCUITS PIT for ROABPs and Log-Variate Circuits

Now we can state the following theorem for blackbox PIT.

Theorem 4.2. ([3]): For an n-variate, individual degree d, and width-w ROABP, there is a blackbox PIT with time
complexity O(ndwlogn), when the variable order is known and the field characteristic is zero or at least ndwlogn.

Corollary 4.1. ([3]): There is a polynomial time blackbox PIT for constant width ROABPs, with known variable order
and field characteristic being zero (or polynomially large).

Now in [3] they gave the below mentioned conjecture and thought of solving it somehow similar to Lemma 4.5.

Conjecture 4.1. Let char(F) = 0. Let f(x) ∈ F[x] be an n-variate, degree-d polynomial computed by a width-w
ROABP. Then f(tr, (t+ 1)r, . . . , (t+ n− 1)r) ̸= 0 for some r bounded by poly(n,w, d).

This is still open. I tried to gave some counter-examples to it for specific values of r but it does not prove the conjecture
to be false at all. This is because we can anytime shift the values a little and get another values where the conjecture
holds. So unless we get a counterexample for all r ∈ poly(n,w, d) we can’t say its false. But as of now we don’t have
much headway for its proof. But in the meantime we can try to prove it for a simpler model as given below, which is
also not a easy task yet.

Subpart of Conjecture 4.1. Let char(F) = 0. Let f(x) ∈ F[x] be an n-variate, degree-d polynomial computed by a

width-w ROABP and has the form as P (x) =
w∑
i=1

n∏
j=1

(1 + ai,jxj) where aij ∈ F (specifically F can be R or C). Then

f(tr, (t+ 1)r, . . . , (t+ n− 1)r) ̸= 0 for some r bounded by poly(n,w, d).

Till now stated works only on known order bivariate and n-variate ROABPs. Now we will delve into a specific case, i.e.,
the log-variate circuits.

5 PIT for Log-Variate Circuits

Simply speaking log-variate circuits means the number of variables involved is at most logarithmic with respect to the
circuit size. We would state the results as in [1].

Studying PIT for log-variate models is crucial, as achieving poly(s)-time blackbox PIT for size-s, degree-s, and
log◦c s-variate circuits (log◦c means composition of log c-times) can solve PIT entirely. Additionally, poly(s)-time
blackbox PIT for size-s and log∗ s-variate Σ ∧ΣΠ circuits could partially solve PIT and prove either E ̸⊆ #P/poly or
VP ̸= VNP.

Here the measure for rank concentration will be the cone size. Using this cone-size we will look at a blackbox PIT
algorithm for circuit models with ‘low’ dimensional partial derivative space.

For a circuit C, we denote its size by |C|. For a monomial m, coefm(C) represents the coefficient of m in the
polynomial computed by C. Additionally, we use C to refer to the polynomial itself computed by the circuit.

Definition 5.1. (Cone of a monomial):A monomial xe is considered a sub-monomial of xf if e ≤ f (coordinate-wise).
It is referred to as a proper sub-monomial of xf if e ≤ f and e ̸= f .

For a monomial xe, the cone of xe is defined as the set of all its sub-monomials. The size of this set, known as the
cone-size of xe, is given by

∏
(e+ 1) :=

∏
i∈[n]

(ei + 1), where e = (e1, . . . , en). A set S of monomials is considered

cone-closed if it contains every sub-monomial of each monomial in S.

Lemma 5.1. (Coefficient Extraction, [1]): Let C be a blackbox circuit that computes an n-variate polynomial of degree
d over a field of size greater than d. For any monomial m =

∏
i∈[n] x

ei
i , there exists an algorithm with a runtime of

poly(|C|, d, cs(m)) to compute the coefficient of m in C, where cs(m) denotes the cone-size of m.

Now we need to check how many low-cone monomials there can be. In the log-variate case there are quasi-polynomially
many.
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Lemma 5.2. (Counting Low Cones, [1]): The number of n-variate monomials with a cone-size of at most k is O(rk2),

where r :=
(

3n
log k

)log k

.

Now using the last two lemmas we can state the following theorem.

Theorem 5.1. ([1]): Let F be a field with characteristic 0 or greater than d. Let P be a set of n-variate polynomials of
degree d, over F, computed by circuits of bitsize s. Suppose that for every P ∈ P, the dimension of the partial derivative

space of P is at most k. Then, blackbox PIT for P can be solved in time (sdk)O(1) ·
(

3n
log k

)O(log k)

.

We can see that When n = O(log k) = O(log sd), the bound becomes polynomial, yielding a polynomial-time
blackbox PIT algorithm for log-variate circuits that have a low-dimensional partial derivative space. Then we get the
immediate following corollary.

Corollary 5.1. ([1]): Let F be a field with characteristic 0 or greater than d. Consider a set P of n-variate, degree-d
polynomials over F , computable by circuits with bit-size s, where n = O(log sd). If the partial derivative space of
each P ∈ P has poly(sd) dimension, then blackbox PIT for P can be solved in poly(sd) time.

Now we can look into depth-3 diagonal circuits Σ ∧ Σ.

Definition 5.2. (Depth-3 diagonal circuit and its rank, [1]). A depth-3 diagonal circuit is of the form Σ ∧ Σ (sum-
power-sum). It computes a polynomial expressed as C(x) =

∑
i∈[k] ciℓ

di
i , where ℓi are linear polynomials over F and

ci ∈ F .

The following lemma introduces an efficient nonzeroness preserving variable reduction map (n → rk(C)) for depth-3
diagonal circuits. For a set of n-variate circuits C over F, a polynomial map Ψ : Fm → Fn is called a nonzeroness
preserving variable reduction map for C, if m < n and for all C ∈ C, C ̸= 0 if and only if Ψ(C) ̸= 0.

Lemma 5.3. (Variable reduction, [1]): Let P (x) be an n-variate d-degree polynomial computed by a size-s depth-3
diagonal circuit over some sufficiently large field F. Then, there exists a poly(nds)-time computable nonzeroness
preserving variable reduction map which converts P to another rk(P )-variate degree-d polynomial computed by a
poly(s)-size depth-3 diagonal circuit.

Then we get this following theorem.

Theorem 5.2. (Log-rank Σ ∧Σ, [1]): Let F be a field of characteristic 0 or > d. Let P be the set of n-variate d-degree
polynomials P , computable by depth-3 diagonal circuits of bitsize s, with rk(P ) = O(log sd). Then, blackbox PIT for
P can be solved in poly(sd)-time.

There are also various algorithms to get cone closed basis but we are not getting into it. But if needed one can look at
[1]. Finally we get the following theorem.

Theorem 5.3. ([1]): Let f(x) ∈ F[x]k be an n-variate d-degree polynomial over Fk and charF = 0 or > d. Let
w = (w1, . . . , wn) ∈ Nn be a basis isolating weight assignment of f(x). Then, f(x+tw) := f(x1+tw1 , . . . , xn+twn)
has a cone-closed basis over F (t).
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